Global existence and boundedness in a quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type
نویسندگان
چکیده
منابع مشابه
A priori bounds and global existence for a strongly coupled quasilinear parabolic system modeling chemotaxis
A priori bounds are found for solutions to a strongly coupled reactiondiffusion system that models competition of species in the presence of chemotaxis. These bounds are used to prove the existence of global solutions.
متن کاملBoundedness in a Three-dimensional Attraction-repulsion Chemotaxis System with Nonlinear Diffusion and Logistic Source
This article concerns the attraction-repulsion chemotaxis system with nonlinear diffusion and logistic source, ut = ∇ · ((u+ 1)m−1∇u)−∇ · (χu∇v) +∇ · (ξu∇w) + ru− μu , x ∈ Ω, t > 0, vt = ∆v + αu− βv, x ∈ Ω, t > 0, wt = ∆w + γu− δw, x ∈ Ω, t > 0 under Neumann boundary conditions in a bounded domain Ω ⊂ R3 with smooth boundary. We show that if the diffusion is strong enough or the logistic dampen...
متن کاملGlobal existence of solutions to a parabolic-elliptic chemotaxis system with critical degenerate di ffusion
متن کامل
Existence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2016
ISSN: 1687-2770
DOI: 10.1186/s13661-016-0518-6